Reprogramming of tau alternative splicing by spliceosome-mediated RNA trans-splicing: implications for tauopathies.
نویسندگان
چکیده
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is caused by mutations in the gene encoding the microtubule-associated protein, tau. Some FTDP-17 mutations affect exon 10 splicing. To correct aberrant exon 10 splicing while retaining endogenous transcriptional control, we evaluated the feasibility of using spliceosome-mediated RNA trans-splicing (SMaRT) to reprogram tau mRNA. We designed a pre-trans-splicing molecule containing human tau exons 10 to 13 and a binding domain complementary to the 3' end of tau intron 9. A minigene comprising tau exons 9, 10, and 11 and minimal flanking intronic sequences was used as a target. RT-PCR analysis of SH-SY5Y cells or COS cells cotransfected with a minigene and a pre-trans-splicing molecule using primers to opposite sides of the predicted splice junction generated products containing exons 9 to 13. Sequencing of the chimeric products showed that an exact exon 9-exon 10 junction had been created, thus demonstrating that tau RNA can be reprogrammed by trans-splicing. Furthermore, by using the same paradigm with a minigene containing full-length intronic sequences, we show that cis-splicing exclusion of exon 10 can be by-passed by trans-splicing and that conversion of exon 10(-) tau RNA into exon 10(+) tau RNA could be achieved with approximately 34% efficiency. Our results demonstrate that an alternatively spliced exon can be replaced by trans-splicing and open the way to novel therapeutic applications of SMaRT for tauopathies and other disorders linked to aberrant alternative splicing.
منابع مشابه
Trans-splicing correction of tau isoform imbalance in a mouse model of tau mis-splicing
Abnormal metabolism of the tau protein is central to the pathogenesis of a number of dementias, including Alzheimer's disease. Aberrant alternative splicing of exon 10 in the tau pre-mRNA resulting in an imbalance of tau isoforms is one of the molecular causes of the inherited tauopathy, FTDP-17. We showed previously in heterologous systems that exon 10 inclusion in tau mRNA could be modulated ...
متن کاملCorrection of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is caused by mutations in the MAPT gene, encoding the tau protein that accumulates in intraneuronal lesions in a number of neurodegenerative diseases. Several FTDP-17 mutations affect alternative splicing and result in excess exon 10 (E10) inclusion in tau mRNA. RNA reprogramming using spliceosome-mediated RNA trans-spl...
متن کاملRBM4 interacts with an intronic element and stimulates tau exon 10 inclusion.
Tau protein, which binds to and stabilizes microtubules, is critical for neuronal survival and function. In the human brain, tau pre-mRNA splicing is regulated to maintain a delicate balance of exon 10-containing and exon 10-skipping isoforms. Splicing mutations affecting tau exon 10 alternative splicing lead to tauopathies, a group of neurodegenerative disorders including dementia. Molecular m...
متن کاملAmetantrone-based compounds as potential regulators of Tau pre-mRNA alternative splicing.
Tau pre-mRNA contains a stem-loop structure involved in the regulation of the alternative splicing of tau protein. We describe here a new family of Tau RNA ligands selected by dynamic combinatorial chemistry based on the combination of ametantrone with small RNA-binding molecules. The most promising compound results from derivatization of one of the side chains of the anthraquinone ring with th...
متن کاملReprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing
Dynamin 2 (DNM2) is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative trea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 43 شماره
صفحات -
تاریخ انتشار 2005